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ABSTRACT

This calibration study was conducted to obtain statistical

data on the mass_ shape_ and velocity of two types of shaped

charge meteor simulator guns. Flash radiographs of the meteor

pellets were taken in low ambient pressure environment to sim-

ulate re-entry conditions_ so that pellet characteristics could

be measured. The methods of radiographic analysis are described.

One type of gun was found to produce nickel pellets with an aver-

age velocity 9._ km/sec and average mass 0.88 gram. The other

type of gun was found to produce iron pellets with average Ivel-

ocity 8._6 km/sec and average mass 0.82 gram.
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SUMMARY

This calibration study was conducted to obtain statistical

data on the mass_ velocity_ shape_ and orientation of artificial
meteors launched by shaped charge guns. Tests were conducted on

two types of guns. One of the guns used a 40 degree hyperbolic

liner manufactured of type 200 nickel while the other gun used

a 30 degree conic liner manufactured of Ingot Iron. Three basic
tests were made of each liner type: (i) a statistical survey of

mass_ velocity_ and orientation of the pellet when fired in
vacuum (the Modified Flight Test)_ (2) effect of spin at & rate

of 25 rps (the Spin Test)_ (3) test actual flight assemblies for

comparison (the Full Flight Test). In addition to those tests_
two other tests were made to evaluate the 40 ° hyperbolic liner:

(i) Body Confinement Test_ (2) Initial Pellet Mass Test.

Test data indicated that the velocity and mass of the pellets

could be predicted within fairly narrow limits and that the 40

Degree Hyperbolic pellet was not affected by spinning at 25 rps_

however_ the mass of the 30 Degree Ingot Iron pellets was decreased

by spinning.

The Modified Flight Tests (statistical surveys) yielded the

following average values with the indicated 95 per cent confidence
intervals on the average values: the 40 ° Hyperbolic liners pro-

duced nickel pellets with an average velocit_ of 9.54 + 0.06 km/sec,
and average mass of 0.84 + 0.ii gram_ the 30 Conic liners produced

Ingot Iron pellets with an average velocity of 8.56 + 0.01 km/sec_

and average mass of 0.77 + 0.05 gram. The Full Flight Tests yielded

the following values with the indicated 95 per cent confidence

intervals on the average values: the _0o Hyperbolic liners pro-

duced nickel pellets with an average velocit_ of 9.66 + 0.06 km/se%

and average mass of 1.09 + 0.30 gram_ the 30U Conic liners produced
Ingot Iron pellets with an average velocity of 8.58 + 0.06 km/sec_

and an average mass of 0.95 + 0.13 gram.
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INTRODUCTION

Background

To evaluate key coefficients in the physical theory of meteors,
it is necessary to carry out flight simulations with artificial
meteors of known mass, shape, density, and velocity (ref. I).

NASA is engaged in a program to provide the required informa-
tion by firing launch vehicles out of the atmosphere to carry acce_
erators aloft. At the proper point in the trajectory of the vehicle,
the artificial meteor is accelerated to the range of meteor re-entry
velocities and is observed during re-entry.

The main purpose of these experiments is to obtain the value
of the luminous efficiency of a meteor-like body of known mass and
composition moving at a known speed. The value of the luminous ef-
ficiency, or the per cent of kinetic energy converted into visible
light, is computed from the observed photographic data of the vis-
ible re-entry trail (ref. 2).

This program is being conducted by the Langley Research Center
at Hampton, Virginia. The actual launch tests are conducted at the

" multistage solid proNASA Wallops Station using a "Trailblazer,
pellant vehicle.

Purpose of Calibration Study

This calibration study was conducted for the Langley Research
Center to obtain statistical data on the mass, velocity, shape,
orientation in space, and tumbling rate of artificial meteors
launched by two types of shaped charge guns.

One of the two guns calibrated was of a new design developed
under NASA contract NAS I-_212 by the Firestone Tire & Rubber
Company, Defense Research Division, of Akron, Ohio. This gun was
manufactured from type 200 nickel and was referred to as the "forty
degree Hyperbolic" liner. A newly developed inhibiting technique
was used with this liner to produce a singL_ compact pellet.

The other gun calibrated was a modificati _ of a design devel-
oped by the Ballistic Research Laboratories of Aberdeen Proving
Grounds, Aberdeen, Maryland. This gun was manufactured from Ingot
Iron and was referred toss the "thirty degree Conic" liner. A
plastic inhibitor was used with this liner to produce a single,
compact pellet.
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Tes t Plan

The NASA test plan required Firestone to conduct three basic

tests of each liner type: a modified flight assembly test to obtain

statistical data of the pellet characteristics, a test to determine
the effect of spin at the rate of 25 rps, and tests using the actual

flight test assembly to determine whether it yielded the same

results as the modified flight test assembly. Since the forty

degree Hyperbolic liner was developed as a bare charge, i.e., with-

out a body, a test of the effect of body confinement was included
in the test plan. In an attempt to determine the mass of the hyper-

bolic _ pellet portion that fragmented and broke away from the main

pellet in flight_ a program to determine the initial mass of the
pellet was added to the test plan. It was also planned that Fire-

stone would supply three flight test assemblies of both the nickel

and the iron guns to NASA for launch flight firing.

Tables IA and IB outline the planned test schedule. The com-

plete calibration program required 47 test shots. However_ it was

necessary to fire several instrumentation shots in some of the pro-

grams due to instrumentation difficulties. Most of the instrumenta-

tion shots were fired in the spin test programs.

DESCRIPTION OF TEST ITEMS

Forty Degree Hyperbolic Test Assemblies Design

General. - Figures I and 2 show the details of the 40 ° Hyper-

bolic liner that was used in this calibration. The groove in the

liner caused the pellet to be cut free from the balance of the jet;

therefore, the groove produced an inhibiting effect on the jet.

The liner register and bottom surfaces were cemented with rubber-

base adhesive to an aluminum adapter plate and loaded in a loading

fixture. Three loading fixtures were used to load the liners. All

three loading fixtures were manufactured to drawing DRC-11-2040
(Figure 3) and assigned a serial number. The serial numbers used

were 5, 6, and 7.

Body confinement and initial pellet mass test assembly. - Since

the 40 U Hyperbolic liner was developed as a bare charge, i.e., with-

out a body_ a test of the effect of body confinement was included in

the test plan. Figure 4 shows the test assembly used for the Body

Confinement Tests in Program 839_ and was also used in Program
8_6 to determine the initial mass of the pellet. All of the aluminium

components used in the 40 ° Hyperbolic test assemblies were made of

6061-T6 aluminum alloy. A twisted pair of wires that acted as an

3



initiation time (t°)t sensor was inserted into the base plug of this
assembly similar the sensor shown in Fig. _. The twisted pair

of wires shorted when the ionization front of the explosion reached

that location. The shorting of the twisted pair of wires started

the operation of electronic equipment in the blockhouse. The base

plug, body, and liner-adaptor plate-charge were assembled using

slip fit of components for securement. The slip fit of the com-

ponents was adequate since these two tests were conducted with the

gun stationary and well supported.

Modified flight test assembly. - The assembly used for the

Modified Flight Test is shown in Fig. _. This assembly was designed

to simulate the Full Flight assembly but be less expensive to manu-

facture. The retainer ring threaded onto the body and pressed

against the adapter plate and therefore held the liner and charge

in the body. The twisted pair of wires that acted as an initiation
time sensor was located well off center so that it would not inter-

fere with the detonators.

Spin test assembly. - The assembly used for the Spin Test is

shown in Fig. 6. An arc-firing detonator (Dupont X 98AA) was used,

in place of the DD8 HO detonator shown in the alternate detonator

arrangement, with_ M18 stab detonator for the first three success-

ful shots of the program (program round numbers 8_O-9, 8_O-IO,

8_O-11). The arc-firing detonator exhibited a short reproducible

firing time, therefore, the firing pulse could be used directly as
a source of the initiation time.

The M36A1 and M18 detonator arrangement shown was used for

the last two successful shots of the program (program round numbers

8_0-13 and 8_O-14). The change in detonator type was made because

of instrumentation difficulties encountered when using the arc-

firing detonator. The M36A1 detonator did not exhibit a short

reproducible firing time, therefore, a different method of obtain-
ing an initiation time source was used. A twisted pair of wires

was located at a distance of one inch from the spinning body of

the assembly. The twisted pair was mounted to a support stand so

that the wires started at a point one inch below the top of the

charge. When the charge exploded, the body of the assembly was

forced against the twisted pair of wires causing them to short.

The shorting of the twisted pair served as an initiation time sen-
sor.

The test assembly was hung vertically on a piece of stiff

steel wire inserted into the end of the spin adapter and held with

a set screw. This wire provided a spin axis for the test assembly.

Full flight test assembly. - Figure 7 shows the assembly used

for the Full Flight Test. The body of this assembly was slotted

on one side, five inches from the liner end of the body, so that a

twisted pair of wires could be taped against the explosive filler



to act as an initiation time sensor. The slot was approximately

.020 inch wide and .050 inch long. This assembly used a DD8 H0
delay detonator with a M18 stab detonator for initiation. Three

pieces of this assembly, less the sensor slot were supplied to NASA

for Flight Test by NASA using rocket launch. Table II shows a

listing of the component weights of the full flight assembly of Fig.
7.

THIRTY DEGREE CONIC TEST ASSEMBLIES DESIGN

General. - Figure 8 shows the details of the 30o conic liner

that was used in this calibration. An Ingot Iron cover was cemented

to the end of the spit back tube of the liner with rubber base ad-

hesive. The metal cap was .00_ inch thick and ._31 inch in diameter.

Two loading fixtures were used to load the liners. Both loading

fixtures were manufactured to drawing DRB-N-_7 (Figure 9) and as-
signed a serial number. The serial numbers used were 16 and 17.

Figure 10 shows the details of the plastic inhibitor used in the 300

conic liner test assemblies.

Modified flight test assembly. - The assembly used for the

Modified Flight Test is shown in Fig. 11. This assembly was designed

to simulate the full flight assembly but be ±ess expensive to manu-

facture. The "Assembly Notes" shown on Fig. 11 describe the pro-
cedures used to cement the components together. Similar to the 40 °

Hyperbolic Modified Flight Test assembly, the twisted pair of wires
that acted as an initiatiorl time sensor _as located well c_f center
so that it would not interfere with the detonators.

Spin test assembly. - The assembly used for the Spin Test is

shown in Fig. 12. Due to instrumentation difficulties, an M36AI
detonator was substituted for the X98AA arc-firing detonator. Fig-

ure 6 shows a similar arrangement for using the M36AI detonator

for a spin test.

Two types of initiation time sensors were used in this program.

The first successful shot (program round number 858-17) used a short-

ing screen with a one inch diameter hole in it, located 2-I/2 inches

in front of the round. The shorting screen consisted of a thin

sheet of plastic, a few thousandths of an inch thick, with aluminum

foil covering the top and bottom surfaces. The foil sheets were

attached to wires and behaved much like a twisted pair of wires for

supplying an initiation time source. The balance of the successful

shots fired in this program (program round numbers 8_8-22, 8_8-23,

858-24, and 858-2_) used a twisted pair of wires standing beside the

spinning round as an initiation time sensor. This was the same ini-
tiation time sensor as was used for the last two shots of the 40 °
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Hyperbolic Spin Test (program round numbers 8_0-13 and 850-14).

The test assembly was hung vertically on a piece of stiff
steel wire inserted into the end of the spin adapter and held with

a set screw. This wire provided a spin axis for the test assembly.

Full flight test assembly. - Figure 13 shows the assembly used

for the Full Flight Test. The body of the assembly was slotted on

one side, 6 inches from the liner end of the body, so that a

twisted pair of wires could be taped against the explosive filler
to act as an initiation time sensor. The slot was approximately

.020 inch wide and .0_0 inch long. The assembly used a DD8 HO delay

detonator with an M18 stab detonator for initiation. Two pieces of

this assembly, less the initiation time sensor slot, were supplied
to NASA for Flight Test by NASA using rocket launch. Table III

shows a listing of the component weights of the full flight assem-

bly of Fig. 13. One piece of an assembly similar to that of Fig.

13, but with the base plug body section one inch longer, also less

the initiation time sensor_ was supplied to NASA for Flight Test by

NASA using rocket launch. Table IV shows a listing of the compon-

ent weights of the long full flight assembly.

HARDWARE MANUFACTURE AND QUALITY CONTROL

Liner Material Control

This calibration program was intended to provide reliable

information on the performance of the meteor simulator designs

tested so that the NASA Flight Test data analysis would have a

statistically reliable basis. Since minute impurities in the liner

composition could affect the re-entry trace_ the liner material

was carefully controlled. This involved the purchase of certified

material_ documentation of in-process heat-treatment, and chemical

and spectrographic analysis.

Test pieces were subject to the same thermal treatment as the

liner material and their mechanical properties were determined.

Appendix A shows a summary of the material inspection and quality

control data. Materials were assigned a lot number when received

and are identified by that lot number in Appendix A.

Inspection of Parts

All test hardware components were IOO_ inspected for compli-

ance with the drawings. The gun performance is most sensitive to
asym'metries and dimensions of the liner. S_ince the liner was by

6



far the most difficult part to manufacture to the close tolerances

specified, most of the metal parts quality control effort was
expended on the manufacture and inspection of the liners. The

plastic inhibitor used in the 30 ° Conic liner assembly was held
within close tolerance because the solidity and size of the pellet

produced by the gun was dependent upon the dimensions of the in-
hibitor.

Appendix B shows the inspection data summary for the liners
tested. Most of the dimensions were held to the tolerances. In

those instances where the parts were not within tolerance, they

were accepted if the deviation was small and if experience indi-
cated that no observable effect on performance was likely. In

addition to the inspection measurements shown in Appendix B_ pre-

cision plaster casts were made of the inside of the 40 ° Hyperbolic

liners. The precision plaster casts were viewed on a ten power

magnification shadowgraph and compared to a tracing of the intend-

ed hyperbolic contour (I0:i scale) drawn on Mylar plastic.

Appendix C shows the inspection data summary for the 300

Conic liner plastic inhibitors used.

Inspection Data of Loaded Assemblies

Appendix D shows the loaded assembly inspection data summary.

The 40 ° Hyperbolic liners were cemented to aluminum adapter plates

prior to loading. The concentricity and perpendicularity of the

liner central axis to the adapter plate register surfaces were

measured prior to loadin_ the liners. Appendix D shows the aver-
age eccentricity was 1.2_ mil with standard deviation .719 mil

and theaverage perpendicularity was I._8 mil with standard devi-

ation •813 mil. These values were total indicator readings (TIR).

Three loading fixtures were used to load the 40 ° Hyperbolic

liners. All three loading fixtures were manufactured to DRC-II-

2040-1 (Fig. 3) and assigned serial numbers. The serial numbers

used were _ 6, and 7. These loading fixtures provided approx-
imately 2.8 inches of explosive above the liner. The weights of

the 6_/3_ octol explosive charges were foun_ to have an average

value of 1.240 pounds with a standard deviation of .004 pound.
The concentricities of the liners to the loading fixtures were

measured after loading. The average eccentricity of liner-to-

loading fixtures was 3._ mils with a standard deviation of 1.4

mil.

Two loading fixtures were used to load the 30 ° Conic liners.

7



Both loading fixtures were manufactured to DRB-N-57 (Fig. 9) and

assigned serial numbers. The serial numbers assigned were 16 and
17. These loading fixtures provided approximately 1.8 inch of

explosive above the liner. The weights of the composition B ex-

plosive charges were found to have an sverage value of 1.9a pounds
with standard deviation of .005 pound. The concentricity of the

outside of the bare charges (after removal from the loading fix-

tures) to the liners were measured. The average eccentricity was
found to be 2.7 mils with a standard deviation of I.i mil. These

values were total indicator readings (TIR).

The position of the plastic inhibitors in the liners was
measured after cementing. The measurements were taken with a depth

micrometer at 90 ° angular spacings. The reading was given a

positive (+) sign if the inhibitor extended from the liner base

and negative (-) sign if the inhibitor was recessed into the liner

base. The average values obtained were +.2 rail, +.2 mil, -.2 mil,

-.3 mil with standard deviations of 2.2 mil_ 2.2 mil_ 2.3 mil and

2.3 rail respectively,

TEST FACILITIES AND PROCEDURES

General

All explosive loading and firing were done at the Defense

Research Division facility at the Ravenna Army Ammunition Plant,

Ravenna, Ohio. The Spin Test shots of programs 850 and 858 were

fired at the Large Chamber. The Initial Pellet Mass Test shots

of program 856 were fired at the Open Test Site. The balance of

the test shots, i.e., programs 839, 847, 851, 853, and 859, were
fired at the NASA Test Site.

NASA Test Site

Figures 14A and 14B show the radiographic set-up of the NASA

Test Site. This two station_ orthogonal X-ray system used a Field

Emission four channel flash X-ray system, model 730-4-231. This

is a IOSKV system having a pulse width of 30 nanoseconds for mimi-

mum blur at high object velocities. The radiographic set-up was

arranged such that the first pair of radiographs of the pellet in

flight were taken at a distance of approximately 33.75 inches from

the meteor gun. The second pair of radiographs were taken at a
distance of approximately 96.75 inches from the meteor gun. The

four conic calibration standard pieces shown in Fig. 14B were manu-

factured to DRA-N-25, shown in Fig. 15. The film density of the

pellet could be compared to that of the conic calibration standard

and the pellet density then determined.



The meteor guns were fired through a 2 inch diameter aperture
hole into a 9 foot long aluminum tubes 6 inch diameter x I/8 inch
wall. The aluminum tube acted as a protective shield for the X-ray
pulsers and X-ray films. This system was constructed such that
the meteor guns could be fired and the pellet observed in a low
pressure environment. Appendix E provides a more detailed descrip-
tion of the NASA Test Site.

V

Large Chamber

The Large Chamber facility was capable of being used as a spin

test facility. The meteor gun was suspended on a piece of 3/64

inch diameter steel wire from the spin mechanism. The gun was

fired through a 2-I/2 inch diameter aperture hole at a distance of

6 inches from the aperture plate.

This facility was equipped with three Field Emission Model

233 X-ray Pl_isers powered by a Model 214 High Voltage Power Supply.

This is a 300 KV system having a pulse width of 100 nanoseconds.

The radiographs were taken in two planes spaced 120 degrees apart.

The first and second radiographs of the pellet in flight were taken

at distances of approximately 40 and _O inches from the meteor gun

respectively. The third radiograph was taken at a distance of

approximately 70 inches from the meteor gun. Appendix E provides

a more detailed description of the Large Chamber facility.

Open Test Site

The Open Test Site facility has the capability of taking

close-up radiographs of meteor guns during or after firing. The

gun was supported by a sheet of thin cardboard with a I-3/4 inch

diameter hole in it. The gun was located in front of a blast-

proof film cassette. The film was approximately 9 inches from the

pellet flight path.

The facility was equipped with two Field Emission Model 233

X-ray Pulsers powered a muu._J. ___- ,,-s_,......... ___

This is a 300 KV system having a pulse width of iO0 nanoseconds.
The pulsers were located one above the other in one common plane.

The first radiograph of the pellet was taken at a distance of ap-
proximately 2-1/2 inches from the end of the meteor gun. The second

radiograph of the pellet was taken at a distance of approximately

10-1/2 inches from the end of the meteor gun. Appendix E provldes

a more detailed description of the Open Test Site.
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DISCUSSION OF DATA AND RESULTS

Data Analysis Methods

General. - The geometry of the X-ray systems and the radio-

graphic film images of the pellets provided dimensional data for

describing the pellets. The NASA Test Site afforded three-dimen-

sional information about the pellets with its orthogonal, two-sta-

tion X-ray system. Therefore_ the data from this facility has allow-

ed a three-dimensional analysis. The Large Chamber and the Open

Test Site afforded two dimensional information about the pellets

because the X-ray pulsers were arranged in linear arrays. For this

reason the Large Chamber and Open Test Site could not be used to

measure pellet spatial properties as accurately as the NASA Test
Site. A six power eye-_iece with reticle was used to measure pel-

let image dimensions_ and a drafting ruler was used to measure pellet

image location. An experimental study of the measurement error

encountered in the analysis of film pellet images, with respect to

pellet lengths diameter_ and mass_ was conducted. Appendix H
describes the experiment and presents the results. The data sample

obtained in the experiment was insufficient to permit any definite

conclusion to be made. The study indicated the following: the

pellet length might have been measured about _% too short_ the pel-
let diameter might have been measured about 3% too small, and the

computed pellet mass might have been about 6% too low.

iO



Spatial Data. - Since the pellet could tumble in flight, the
center of the pellet, which is an estimate of the pellet center of

mass_ was referred to as the location of the pellet. This definition

of pellet location was made because it was least affected by the

pellet orientation. The pellet velocity was determined by calcu-

lating the distance traveled from the first to the last radiographic
station and dividing by the measured time interval between th_ fir-

ing of the associated X-ray pulsers.

The NASA Test Site data was analysed with the aid of an IBM

1620 digital computer. Two independent computer programs were

devised for analysis of the NASA Test Site spatial data. One pro-

gram used intersecting planes, vectors, and matrices while the other

program used lines, trigonometry, and least-square nearest approach

of lines. The latter method was chosen as the program to be used

because_ of the two programs, it was the least affected by pellet

orientation. The method of analysis used by the computer is des-

cribed in Appendix F. The computer program calculated the fol-

lowing: the geometric magnification factor of the pellet for each

of the four films, the pellet velocity, orientation angles (spheric-

al coordinates) of the pellet in station I and station 2, and
length of the pellet in station I and station 2.

Mass data. - The pellet mass was determined by measuring the

film image and computing the volume assuming the pellet form was

approximated by conic frustums. This volume was then corrected

for magnification effects. The volume thus obtained was taken to

be the pellet volume for computations of pellet mass for the Large

Chamber and Open Test Site. But, since the NASA Test Site afforded

three dimensional data_ the volume described above was corrected

for orientation of the pellet, i.e., image f_reshortening, in all

NASA Test Site mass calculations. The mass reported for each sta-

tion of the NASA Test Site was the average value of the two masses

obtained at each station, i.e., film I and 2 for station I_ and

film 3 and 4 for station 2. The mass calculations were performed

by an IBM 1620 digital computer. A description of the method of

mass analysis used by the computer is presented in Appendix G.

Radiographs

General. - The radiographs presented in Figures 16 through 23

provide representative views of each pellet reported in this cali-

bration study. The radiograph shown for each round was selected as

the best view in the set of radiographs obtained for that round.

Forty Degree Hyperbolic. - The radiographs presented in Fig-
ures 16, 17, and 19 show the debris that accompanied the low ambient

pressure shots of the 40 ° Hyperbolic nickel guns. The radiographs

presented in Fig. 18 show the atmospheric ambient pressure spin test

shots. It can be seen that the amount of debris that accompanied
the atmospheric ambient pressure test shots was much less than for

Ii



the low ambient pressure test shots. Figure 20 presents the two io-
radiographs taken at the Open Test Site of round 896-2, of the
Initial Pellet Mass Test. The two views shown, station i and
station 2_ are of the same pellet as it left the liner and pro-
ceeded along its flight path. The initial mass of the pellet was
computed for the station I radiograph.

Thirty De_ree Conic. - The radiographs presented in Figure 21

and Figure 23 show the debris that accompanied the 30 ° Conic Ingot

Iron pellet when fired in a low ambient pressure environment.

Figure 22 presents radiographs of the 30 ° Conic Spin Test (-2_

rps). The pellet mass and size are much lower in the Spin Test
shots and the debris visible is much less than for the low ambient

pressuretest shots. The pellet character for the 30 ° Conic Spin

Test shots was observed to be inconsistent and generally poor.

Test Data

General. - Tables V and VII present the pellet mass and di-

mension data of each shot for the 40 ° Hyperbolic nickel and 30 °

Conic Ingot Iron test assemblies respectively. Tables VI and VIII
present the pellet velocity and orientation data of each shot for

the 40 ° Hyperbolic nickel and 300 Conic Ingot Iron test assemblies

respectively. Table IX presents the velocity data summary for
both types of guns. Table X presents the mass and dimensions data

summary for both types of guns.

The purpose of these tests was- to accumulate statistically

significant mass and velocity data, to determine the effects of

spinning at -25 rps_ to determine the effects of body confinement

on the Hyperbolic gun, and to estimate the mass of the debris par-

ticles that accompany the pellet from the Hyperbolic gun. Most of

the sample sizes were kept to a minimum. It was therefore difficult

to report statistically meaningful data for most of the tests. But,

the sample sizes of the two Modified Flight Tests were made large

enough to provide reliable data on that type of assembly.

Tables IX and X list the sample size_ sample mean, sample
spread_ and the standard deviation of the velocities and masses

respectively. But, since the population mean was not known for the

mass and velocity data_ it was desirable to know how nearly the

sample mean represented the population mean. Therefore, the 9_o

Confidence Interval for the mean was computed for the sets of data.

The population mean has a 95% probability of falling within the

Confidence Interval limits. For instance, on line 2 of Table IX,
the sample mean velocity is 9.536 km/sec for ii nickel pellets

fired from the 40 ° Hyperbolic gun design. The 9_% Confidence

Interval is 0.0557 km/sec. This states that there is a 95% prob-

ability that the population mean falls within the range 9.g36
+_ .0_57 km/sec, i.e., between 9.480 km/sec and 9._92 km/sec.

12



The same technique was applied to the sample standard devia-
tion to establish the reliability of the reported value. In the
standard deviation tabulations, the 9_o Confidence Intervals pre-
sented are actual values instead of the plus or minus value given
for the mean. This tabulation states that, for the 11 nickel pel-
lets above, there is 9_% probability that the standard deviation of
the population will fall between 0.O_62 km/sec and 0.1397 km/sec.

Velocity and orientation. - Tables VI and VIII present the

pellet velocity and orientation data for each round in this cali-

bration study. Table IX presents the statistical summary of the

velocity data. The pellet orientation is reported in spherical

coordinates where the pellet was traveling in the positive Z di-

rection. The angle Gamma corresponds to the angle Phi commonly

used in spherical coordinates. The orientation angles were not

reported in the summary tables since the values appear to be ran-

dom. An approximation of the tumbling rate is presented in Tables

VI and VIII. Due to limitations of the X-ray system geometry and

methods of computation, the values shown were calculated by as-
suming that the pellet did not tumble more than ½ revolution from

Station I to Station 2. The tumbling rate was not reported in

the summary tables because of the approximation character of the

values computed.

The average veloci_s of the 40 ° Hyperbolic nickel gun programs

were as follows: Body Confinement Test, 9.46 km/sec_ Modified

Flight Test, 9.5_ km/sec_ Full Flight Test, 9.66 km/sec_ Spin

Test (-2_rps), 9.49 km/sec. In comparing the Body Confinement

Test average velocity with previous bare charge tests_ with the

same liner and charge configuration, no velocity effect due to body

confinement was apparent. The Modified Flight Test average velocity

differed from the Full Flight Test average velocity by -0.12 km/sec.

This was an unexpectedly large difference. Unfortunately, the small

sample size of the Full Flight Test prohibits a satisfactory sta-

tistical treatment of this difference of average values. Therefore,
no definite statement of significance of differences of the mean

can be made. The Spin Test average velocity differed from the Mod-

ified Flight Test average velocity by only 0.0_ km/sec.

m_ ............. _+_,_ _,_ ___ _Go Conic Ingot Iron Run programs
-L.L J._; C_ V _ J. _._ _'_._ v _..J- ,...) _ -_

were as follows: Modified Flight Test, 8._6 km/sec_ Full Flight

Test, 8._8 km/sec_ Spin Test (-2_rps), 8.39 km/sec. The Modified

Flight Test average velocity was 0.02 km/sec less than that of

the Full Flight Test. Unfortunately, the small sample size of the

Full Flight Test prohibits a satisfactory statistical treatment of

this difference of average values. Therefore, no definite statement

of significance of difference of the mean can be made. The Spin

Test (-2_rps) average velocity was 0.18 km/sec less than that of

the Modified Flight Test. The velocities obtained for the Spin Test

Shots had a much larger maximum spread than the Modified Flight Test.

This large maximum spread was believed to have been caused by the

13



character of the pellet observed in the 30o Conic Spin Test. The

Spin Test pellet was of poor quality, i.e., breaking up, in some of

the Spin Test shots and therefore hampered a precise determination

of the pellet location.

Mass and dimension data. - Tables V and VII present the pellet

mass and dimensions data for each round in this calibration study.

Table X presents the statistical summary of the mass data. The

data is presented as Station I data and Station 2 data as well as

the combined Station I + 2, i.e., the average value for that round.

The average mass values for the rounds of the 40 ° Hyperbolic

nickel gun programs were as follows: Body Confinement Test, 0.84

gram_ Modified Flight Test_ 0.8_ gram; Full Flight Test, I .09
gram; Spin Test (-2_rps), I .32 gram. The Body Confinement Test
average mass differed from the Modified Flight Test by less than O.Ol

grams. The Modified Flight Test average mass differed from the
Full Flight Test by 0.26 gram. Unfortunately, the small sample

size of the Full Flight Test prohibits a satisfactory statistical

treatment of this difference of average values. Therefore, no

definite statement of significance of difference of the mean can

be made. The Spin Test (-2_rps) differed from the Modified Flight

Test by 0.48 gram. The large difference between the average mass

of the Spin Test shots and the Modified Flight Test shots could be

explained by the ambient pressure difference between the two test

programs. It was observed that the type of inhibiting used on the

Hyperbolic liner in this calibration study, introduced a shock

into the rear of the pellet. In the atmospheric shots, the pellet

appeared stable and did not suffer appreciable damage due to the

inhibition-induced shock. But, when the gun was fired in a low

pressure environment, the pellet suffered a progressive fragmenta-

tion of the rear of the pellet. This fragmentation progressed about

0.1 inch along the length of the pellet and therefore reduced the

mass of the pellet. The air apparently acted as a compressive

force on the sides of the pellet, and therefore retarded the frag-

mentation tendency.

Assuming that the bulk of the particles that were found to
surround the _0 ° Hyperbolic nickel pellet in this calibration

study were formed by the fragmentation of the rear of the pellet,
a program was included to determine the initial mass of the pel-

let, i.e., before fragmentation. The mass of the pellet was found

for the pellet about 2.g inches out of the gun. The initial pel-

let msss was found to be about 1.68 gram • This value was found

for one shot, therefore the value of the initial mass obtained can

only be stated as an approximate value. The mass of the particles

surrounding the low ambient pressure shots was therefore estimated

to be about 0.84 gram for the Modified Flight Test, and 0._9 grams
for the Full Flight Test.

Another experimental determination of the debris surrounding

14
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the 40 ° Hyperbolic nickel pellet was undertaken. This determina-

tion was based only on measuring the film images of the debris.

Appendix I presents the method of analysis and the results.

The average mass values for the rounds of the 30 ° Conic Ingot

Iron gun programs were as follows: Modified Flight Test 0.77
gram; Full Flight Test, 0.9_ gram_ Spin Test (-2_rps), 0_.49 gram.

The Modified Flight Test average mass differed from the Full Flight

Test by 0.18 gram. Unfortunately, the small sample size of the
Full Flight Test prohibits a satisfactory statistical treatment of

this difference of average values. Therefore_ no definite state-
ment of significance of difference of the mean can be made. The

Spin Test average mass differed from the Modified Flight Test by

0.29 gram. The large difference between the average mass of the

Spin Test and the Modified Flight Test could be explained by the

pellet character. The Spin Test pellet was of poor quality_ i.e.,

breaking up_ in some of the Spin Test shots. The maximum spread

of the masses of the Spin Test was O.3_ gram_ which is over three
times as large as that of the ii Modified Flight Test shots.

Combined mass and velocity data. - If all of the low ambient

pressure test shots of each type of liner were assumed to be from

common populations, the corresponding velocity and mass data could
be combined. This assumption could not be based on statistical

tests, as was discussed in the preceeding sections of this report.
Figures 24 and 2_ present graphic displays of the velocity and

combined station I and 2 mass data of the low ambient pressure

tests of Tables V and VI, and Tables VII and VIII respectively.

The figures display the pellet mass vs the pellet velocity. The

circle plot represents the over-all average value for all of the

low ambient pressure test shots shown on each graph. The rectangle
inclosing the over-all average value represents the included 9_

per cent confidence interval on the over-all average value. That

is, there is a probability of .9_ that the average value of the

total population (an infinitely large number of shots) would lie

within the rectangle. The over-all average value shown in Fig.

24 (40 ° Hyperbolic liner) was: velocity, 9._4 km/sec, with 9_ per

cent confidence interval + O.O_ km/sec, and standard deviation

0.09 km/sec_ mass, 0.88 gram, with 9_ per cent confidence interval

+ 0.04 gram, and standard deviation 0.17 gram. The over-all average

value shown in Fig. 25 (30o Conic Liner) was: velocity_ _°._uj_

km/sec, with 9_ per cent confidence interval + 0.01_ km/sec_ and

standard deviation 0.02 km/sec; mass 0.82 gram_ with 9_ per cent

confidence interval + 0.06 gram_ and standard deviation 0.i0 gram.

CONCLUSIONS

(i) The Modified Flight Tests provided statistically sig-

nificant data describing the pellets produced by the two types of

guns. The Full Flight Test data was expected to correlate well



with the Modified Flight Test data and therefore determine the Full
Flight Test pellet characteristics. Unfortunately, for both the
40° Hyperbolic and the 30° Conic assemblies, the Full Flight Test
assemblies produced slightly higher velocity and larger mass, than
the Modified Flight Test assemblies. The small sample size of the
Full Flight Tests prohibited a satisfactory statistical treatment
of the differences. Possibly there was no significant difference
between the Full Flight Test pellets and the Modified Flight Test
pellets, but this conclusion could not be based on statistical
te sts.

(2) If the low ambient pressure test data for the 40° Hyper-
bolic nickel liners are assumed to belong to one common population,
the following average values with the indicated 95 per cent confi-
dence intervals result: average velocity, 9.54 + 0.05 km/sec_
average mass, 0.88 _+0.04 gram. If the low ambient pressure test
data for the 30° Conic Ingot Iron liners are assumed to belong to
one common population, the following average values with the indi-
cated 95 per cent confidence intervals result: average velocity,
8.565 + 0.015 km/sec; average mass, 0.82 + 0.06 gram.

(3) The 40° Hyperbolic nickel pellets appeared to be more
solid than the 30o Conic Ingot Iron pellets. The nickel pellets
displayed a strong tendency to split lengthwise from the rear. This
splitting tendency was probably the effect of a shock induced into
the pellet by the inhibiting mechanism used. A different type of
inhibitor might reduce the inhibitor induced shock and therefore
reduce the splitting tendency.

(4) An estimation of the debris surrounding the 40° Hyperbolic
nickel pellets fired in low ambient pressure environment indicated
that the mass of the debris could be as large as the mass of the
pellet.

(5) The 40° Hyperbolic nickel pellets appeared to be unaf-
fected by the presence of an aluminum body. That is, the Body
Confinement Test yielded the same basic pellet as previous shots
fired without a body.

RECOMMENDATIONS

After reviewing the results of this calibration study, the
following recommendations were made:

(i) Since the differences between the Modified Flight Test
pellets and the Full Flight Test pellets were not satisfactorily
resolved, all shots fired in future calibration studies should be
of the Full Flight Test design. This would remove any doubt that
the statistical results and predictions were true for the Full
Flight Test assembly supplied to NASAfor rocket launched Flight Testing.

16



(2) Future Spin Test firing should be done in a low ambient
pressure environment. This would remove any atmospheric pressure
affects on the pellets so that a true test of spin affects could
be obtained.

17



APPENDIX A •

LINER MATERIAL CHARACTERISTICS

Material Record

Type Material: Type 200 Nickel, cold drawn, 2-I/8 inch
diameter bars.

Firestone Lot No.: 57, and 57A*

End Use: Hyperbolic liners, Firestone DRB-23-2295

Thermal Treatment : Pieces were rough machined, heated to
1500 ° F in a neutral salt bath, held

for 30 minutes at temperature, and air
cooled.

Mechanical Properties :

Yield Strength

Tensile Strength

Elongation in 2 inches
Reduction in Area

Rockwell Hardness

26,500 psi

73,000 psi
_9_

58%
B 51

These properties were obtained on a test piece after annealing.

Spectrographic Analysis :

Nickel Major
Carbon O. 080%

Manganese O. 1 5

Phosphorous 0.0025
Sulfur 0.004

Silicon 0.025
Iron 0.022

Spectrographic analysis showed no other trace metals
greater than 0.01%.

*Lots 57 and 57A were certified to be of the

same heat number and composition.
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APPENDIX A

Material Record

Type Material: Ingot Iron, cold drawn, Armco Magnetic,
3-I/2 inch diameter bars.

Firestone Lot No.: 60

End Use: Conical liners, Firestone DRB-N-5%

Thermal Treatment: None

Mechanical Properties :

Yield Strength

Tensile Strength

Elongation in 2 inches
Reduction in Area

Rockwell Hardness

48,600 psi

52,500 psi
25%
65%
B 69

Chemical Analysis :

Carbon

Manganese

Phosphorous
Sulfur

Silicon

Nickel

Chromium

Molybdenum

Copper

0.

0.012

o.o23
o.o03
O. 02

0.01

0.02

0.10

Spectrographic Analysis:

Iron Major
Carbon O. 038%

Manganese 0.02i

Phosphorous O. 0065
Sulfur O. 014

Chromium O. 025

Spectrographic analysis showed no other trace metals
greater than 0.01
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Appendix D

LOADED ASSEMBLY INSPECTION SUMMARY

Nickel Hyperbolic Liner

1

2

3

1,

5

6

7

8

9

i0

11

12

13

15

16

17

18

19

20

21

22

23

2_

25

26

28

TYPE '[_ST

Body Confinl_nt Test

Modified Flight Test

LII_R-AI_APTER PIATE L_TOCOI_"OF OCTOL L
ASS_LY L_DI_

L_IX. EXPLOSIVE I
PROGRAM L_ CO,C. PZRP. FIXTURE FILLER II
ROUND MIAL (IN.) (IN.) SERIAL E_ WEIG]E

I_MBER _ (T,I,R.) (T.I.R.) _ (_7I:_.) (m,)
Z

(_'tZ 1) (_m'z 1) (NOTE 2)

839-i 888 .0015 .0020 6 .00_ 1.2k 1

839-2 281 .0020 .0015 5 •003 I.2& 2

839_ 285 .0015 .0005 5 .003 1.2& 3

839-7 286 .0028 .oo20 5 •003 1.23

839-8 28k .0020 .0020 7 .002 1.23 5

8_7-I 291 .0007 .0016 5 .003 1.2_ 6

293 .001_ .0009 5 .002 l.S& ?

29& .0012 .003A ? .ooA 1.2& 8

295 .0013 .0015 6 .00& 1.2_ 9

297 .00_ .OO07 5 .OOl z.2& 1o

3_9 .oo35 .oo12 5 .00_ 1.2_, 11

351 .0008 .0036 6 .002 1.2_ 12

352 .0010 .0011 6 .005 1.21_ 13

353 .0005 .0033 7 .005 1.2_ i_

35& .0018 .oo10 5 .OOl 1.2& 15

39_ .00LI .ooe3 5 .oo3 1.2_ 16

85o-9 39o .ooo9 .ooo7 6 .007 1.2_ 17

850-1o 38& .o<x)5 .001& ? .oo& 1.2_ 18

386 .ooo5 .oo2o 5 .o_. 1.2_ 19

850 -13 379 .oo18 .0o28 5 .005 z.2_. 20

850-1_ 382 .0008 .OOLO 6 .0o_ I. 21, 21

85i-2 380 .o00_ .(xx)7 6 .005 1.2& 22

389 . oo07 .0012 _ .oo2 i. 2_ 23

383 .o0o8 .OOl7 ? .oo3 ±.2& _5

385 .ooo7 .OOL1. 5 -00_ 1.23 _6

388 .OOlO .oo18 7 -00& 1.25 27

..... 391 . o0o9 . oo13 5 .001 1.2_ 28

..... 393 .o015 .ooo7 5 .oo_ '1.2b, 29

•oo128 .oo1_8 -- oo_ l. 2_o
.o00719 .ooo813 -- .001_04 .00&211

.... 8_7-2

" _7 -_

8_7-5

8_7-6

8_7-7

" 8_7 -8

" 8_7 -9

8_7 -1o

" 8_?-LI

8_7 -12

" 850-11

Full Fllght Test

" 851-3

Initial Pellet _s Test 856-1

" 856-2

Full Flight Shipped to NASA .....

,, ,,

AV_qAGE OF ABOVE 00_ OF _TA:

S_ANDARD I_VIATIO][ OF ABOVE COII_4_ OF DATA :

_Ze i:

mote 2:

T_,_ eoac_ntrlcity of e-hea_--__m_hlywas measured by mounting the assembly to a precision mandrel and indicatiug the

outside surface of the adapter plate. The perpendicularity was measured w_le the liner ,-_ o_ the _-_drei by

In4Licatln6 the surf_-e of the adapter plate that supported the liner with respect to the loading fixture, that is,

for Program 839 and 856, the upper surface was indicated while all other pro_ used the lower surface.

The concentricity of the loadln_ fixture to the liner after loading w_s measured by placing "the loading fixture ot_

precision rollers and indleatlnE the inside of the liner at the depth of I.50 inches into the lower adapter plate
assembly.
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Appendix E

TEST FACILITIES

NASA Test Site

General.-Figures E-_and E-2present views of the NASA Test Site

facility. This facility consisted of a metal chamber with a six inch

thick steel 51ast shield at one end. The meteor gun was mounted
horizontally in an adjustable gun holder to the outside of the six-

inch thick blast shield by means of a series of steel plates. A 2

inch I.D. aperture fitting was mounted in the center of these plates.

The external chamber assembly_ including the meteor gun_ was encased

in a 7-inch diameter_ .064-inch wall_ aluminum vacuum housing. This

vacuum housing was bolted to the largest of the steel plates and

sealed to it by means of an "0" ring. A 2½-inch I.D. steel tube

connected the plate outside the chamber to the inside vacuum tank

mounting. A pipe from a vacuum pump (Kinney_ Model KC-I _) was welded

to the vacuum tank mounting. A 9-foot long_ 6-inch 0.D. x I/8-

inch wall_ 6061-T6 aluminum alloy_ vacuum tank was bolted to the tank

mounting and sealed by a 12-inch diameter "0" ring flange.

An adjustable steel rack was used to support the tank and sup-

port and align the four Field Emission Corporation Model 231 X-ray

pulsers. The Model 231 X-ray pulsers discharged a lOT KV pulse for

30 nanoseconds. The X-ray pulsers were arranged in orthogonal pairs

on both sides of the tank. As shown in Fig. E-2_ the X-ray pulsers
were mounted at an angle of 45 ° from a horizontal plane through the

tank axis. One thermocouple vacuum gage_ Kinney Model KTG-I_ was

connected to the vacuum tank and another to the vacuum pump for pres-

sure measurement. The cassette holders for each station (orthogonal

pair of X-ray pulsers) were bracketed together at right angles and

mounted on top of the tank so that the film planes were perpendicular

to the corresponding pulser axes. Eastman Kodak "Royal Blue Medical

Film" was used in the cassettes with DuPont Industrial intensifying

Screens. A pair of Lucite plastic sheets were bracketed at right

angles and hung on the underside of the vacuum tank directly below

the cassettes. Conic Calibration Standards (Fig. I_) were mounted

on these plastic sheets. The material of the Conic Calibration

Standard used was the same as the meteor simulator being tested.

A Beckman_ Model 7270_ digital readout counter, set at x10-7sec,

was used to measure the time from the shorting of the "twisted

pair" to the discharge of the X-ray pulsers. A single trace oscil-

loscope_ Tektronix Model 54_ with a Polaroid camera attached was

used as a backup system for time measurements.
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Measurement procedure. - The NASA Test Site_ as shown in Fig.

E-2_ was constructed with two separate orthogonal stations which
were arranged along the horizontal axis of the vacuum tank. All

spatial measurements were therefore made in relation to this tank

axis to reduce error. The information necessary for proper system

alignment included: X-ray beam axis to tank axis relationl X-ray

beam axis to vertical fiducial mark relationl and X-ray source to
film distance. A basic requirement was that at each station the

two X-ray beams intersect the tank axis such that one plane was

formed and that the plane was normal to the tank axis. The verti-

cal fiducial marks were located so that they lay within the X-ray

beam plane. Additional information necessary for pellet velocity

computations included: the distance between station one and station

two_ the time interval between the X-ray pulser discharges at sta-

tion one and station two_ and the pellet spatial position in the

reference frame of each station. Finally_ a pressure reading was

necessary to determine the vacuum level. The following paragraphs

discuss the methods used to obtain the necessary measurements.

Because of irregularity_ slope_ and lack of plumb_ the building

housing the vacuum apparatus was not used as a reference for align-

ment of the equipment. Measurements between the X-ray pulsers_

vacuum tank_ and cassette holders were made relative to each other.

The X-ray pulsers were first aligned such that the distance between

the pairs of pulsers at each station was constant and each pulser of

a pair was the same distance from the vacuum tank flange. Once
aligned_ the pulsers were set at a 4_o angle to a plumb line passing

through the tank axis by using a leveling device. The pulsers were

then located at approximately the same distance from the tank. The

vertical fiducial marks of the cassettes were located in the plane

of the pulsers_ at each station_ by placing the cassette holder

over a scribe mark on the top of the vacuum tank and placing the

cassette fiducial marks the same distance from the vacuum tank flange

as the pulsers of that station. The distance between the pulser

boss and the cassette holder was measured using an extended machin-
ist's square balanced on the back of the cassette holder. A straight

edge was placed flat across the pulser boss and was used to indicate

the machinist's square for the measurement. The measurements des-

cribed above were checked throughout the program for variation. The

data taken made it possible to locate the effective X-ray source_

vacuum tank axis_ and film fiducial marks in space.

The measurement of the time interval between the X-ray pulser

discharges at the two stations was made by two independant methods.

One method used a twisted pair of no. 28 enameled wire placed in

direct contact with the explosive filler. When the twisted pair was

shorted by the detonation of the round_ a pair of delay amplifiers

(Field Emission Corp._ Model I_4) and a pair of digital read-out
counters (Beckman Model 7270) were started. One amplifier and one

,_.

counter were connected to the pair of pulsers at each station through

pulser triggering step-up transformers. When the pulsers were trig-
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gered by the delay amplifiers the counters stopped. The time in-

terval was then obtained by subtracting the trigger time at station

one from the trigger time at station two. This system was the more
accurate of the two methods used to measure the time interval and

was used when ever possible in velocity computations.

The second method used a single trace oscilloscope (Tektronix_

Model _4_) with a Polaroid camera attached. The sweep rate of the

oscilloscope was set at 20_sec/cm. The oscilloscope was connected

to the output of the delay amplifier for station one. The delay

amplifier triggered the oscilloscope sweep and the pulser triggering

step-up transformer simultaneously. The vertical input of the

oscilloscope was attached to an antenna hung near the pulsers of

both stations. The time interval was determined by measuring the
distance between pulser discharge hash marks on the film and

correcting for the reduction factor developed in the camera optical

sys tem.

In comparing the two time measurement systems it was found

that the oscilloscope measured time interval was less than the

counter measured time interval by 2.8 to 3.2_sec. This was due to

error in the calibration of the sweep rate of the oscilloscope.

Therefore_ a correction factor was added to all oscilloscope read-

ings_ used in calculating velocities_ to compensate this error.

The vacuum level_ i.e._ ambient pressure of the enclosed vacuum

system_ was measured with thermocouple vacuum gages (Kinney KTG-I).

Readings were taken at both the tank and the pump. The pump reading

appeared to be approximately twenty microns lower than the tank read-

ing. The ambient pressure reading was corrected for ambient temp-

erature since the thermocouple gage was not accurate above seventy

degrees Fahrenheit•

The task of measuring the pellet image on the film required

care_ accuracy_ and a certain amount of personal judgment on the part

of the observer. One problem encountered involved the determination

of the pellet central axis. If the pellet axis was nearly perpen-

dicular to one of the two film planes of the station_ it was difficult

to determine the central axis of the pellet image on the film. If
....._ _ .... _ _o_ *_ _ _n_m_ Other nrob-the pellet was u_ _ _ .... _ ................ .

lems involved the location of the pellet end points of the film image.

Since the pellet was usually not exactly parallel to the film_ the

end points lay somewhere within the pellet image. Splitting_ peel-

ing_ and fragmenting of the pellet also made determination of the

pellet tip and tail difficult.

Before any measurements were made_ the pair of orthogonal
films for each station were viewed and the general character of

the pellet examined. An effort was made to determine the spatial

orientation_ shape_ and peeling and fragmenting effects. The film

to be measured was then placed on an illuminated viewing screen.

29



Appendix E

A transparent plastic sheet with an axis graduated in tenths of an
inch was used to help in locating pellet central axis. The plastic

sheet was then removed and the end points were chosen and marked

lightly in pencil. Peeling or fragmenting material which seemed
unstable was not considered as part of the pellet. The plastic

sheet with an axis was then again positioned under the film and

aligned with reference to the end points. Measurements of the
distance to the horizontal and vertical fiducial marks were made for

each end point using a clear plastic draftsman's ruler that was
accurate to 0.02 inch.

Since the pellet diameter was squared in the calculation of

the pellet volume_ measurement of the pellet diameter required

special measuring techniques. A reticle_ accurate to O.00_ inch_

and an eyepiece were used to measure the diameters and lengths of

the pellet images. The plastic sheet with a graduated axis was

used as a guide for measuring pellet image diameters at intervals
of 0.1 inch. The diameters were measured to hhe middle of the

penumbra-like band at the edge of the pellet image.

An IBM 1620 computer was used to perform the calculations

necessary to analyze the pellet image data and produce the pellet

descriptive information_ i.e._ mass s velocity_ orientation in

space_ length_ and tumbling rate.

Large Chamber

General. -Figures E-3 and E-4 present three views of the Large

Chamber. This test facility had an open-roofed_ pyramid-shaped_

firing chamber at ground level and a two room basement s directly
belows housing the X-ray pulsers and film cassettes. Pellets were

fired from the firing chambers through a 2-1/2-inch aperture hole

on the floor of the chamber s down into the basement where radio-
graphs of the pellet could be taken. The floor of the chamber

had a 3-inch hole through its 6-inch thick steel plate.

This facilitywas used to spin test the meteor simulators in

programs 8_0 and 8_8. The gun was supported to the spin mechanism
by a piece of 3/64 inch stiff steel wire. The wire was guyed so

that the gun was aligned over the aperture hole while spinning. The

length of the steel wire was adjusted so that the liner in the gun

was 6 inches above the aperture plate. The angular velocity of the

gun was monitored on an oscilloscope so that the gun could be fired

when the desired angu_]_r velocity s in this case -2_rps_ was obtained.

The radiographic equipment consisted of three Field Emission

Corporation_ Model 233 X-ray pulsers which produced a 300KV dis-

charge for 100 nanoseconds. The X-ray pulsers were arranged to
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view the pellet in two planes with 120 ° angular spacing. The

system used three delay amplifiers, Field Emission Corporation,

Model 154. One X-ray pulser was attached to each delay amplifier.

The delay amplifiers were started by an electrical impulse at the

time of the explosion. Three methods of producing an electrical

impulse were used.

(I) Shorting Screen: A shorting screen consists of a thin

plastic sheet with metal foil laminated on both sides. Wire leads

were attached to the metal foil sheets. When any portion of the

explosion reached the shorting screen_ the metal sheets were shorted.

In these tests a l-inch diameter hole was cut in the shorting

screen_ to allow the pellet to pass through_ and the shorting
screen was placed 2-I/2 inches in front of the gun.

(2) Repeatable detonation time detonators: High voltage

detonators, DupontX98AA, produce a repeatable detonation time when

fired at approximately 3 KV. In some of the Spin Test shots_ these

arc-firing detonators were used. Then_ the electrical impulse used

to start the delay amplifiers was the initial detonation impulse.

(3) Twisted pair of wires: A twisted pair of no. 28 enameled

wires were located at about l-inch from the spindling round and

supported to a wooden stand. When the round was detonated, the

twisted pair of wires shorted at the time that the shock wave or

debris reached them. This system proveded a very satisfactory
initiation time sensor.

The same electrical impulse that started the delay amplifiers

also starte_ three Beckman Model 7270 digital readout counters_
set at x10-/ multiplier. The'counters were stopped when the delay

amplifiers triggered the X-ray pulser discharges. A back up time

measuring system was also used. The back up system consisted of a

Tektronix Model _ dual trace oscilloscope_ with a Polaroid

camera attached. The oscilloscope vertical input was attached to

an antenna hung near the X-ray pulsers. When the delay amplifiers

started_ the oscilloscope began its sweep. When the X-ray pulsers

discharged_ the oscilloscope trace recorded the wave form created
by the X-ray pulser discharge.

The angular velocity of the gun in the Spin Tests was measured
with an oscilloscope (Dumont Model 304-H). The vertical input was

attached to a magnetic pickup coil mounted in close proximity to a

magnet mounted on the spin drive axis that supported the meteor

simulator gun. The horizontal input was attached to a sine wave

generator which produced a 2_ cps signal. This set up produced

Lissajou figures on the oscilloscope when the round was spinning.

When the gun was spun at 2_ rps_ the Lissajou figure formed was a
circle.

Eastman Kodak "Royal Blue Medical Film" and DuPont Industrial
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Intensifying Screens were used in the film cassettes.

Measurement procedure. - Since this facility did not afford

two simultaneous views of the pellet, but instead, three indepen-

dent views, the pellet could not be analyzed three dimensionally.

The pellet flight path was assumed to be down the center of the

X-ray system. Measurements of locations of fiducial marks were
made with reference to the ceiling of the basement. Information

required for the alignment of the systems included: pulser to
film relationship, pulser to round axis relationship, pulser to

ceiling distance, and the distance from the X-ray source to the
film. Additional information needed for computing the pellet vel-

ocity included: the vertical distance between X-ray pulsers, the
vertical distance between fiducial marks, the time interval between

X-ray pulser discharges, and the vertical distance from the pellet

image to the fiducial mark on the film.

System alignment measurements were made using a tape measure

and plumb line. Time intervals between X-ray pulser discharges

were measured with oscilloscope and counters as at the NASA Test

Site. The film measuring procedures used for this facility were
identical to those used for the NASA Test Site. The mass and velo-

city data obtained from the Large Chamber testing did not include
the three-dimensional corrections used for the NASA Test Site_

therefore, the mass and velocity values obtained for the Spin Test
shots should be considered as approximate values.

OPEN TEST SITE

General. -Figure E-_ and E-6 present three of the Open Test

Site test facility. This test i'acility consisted of a large,

parabolic-shaped, dirt-reinforced, steel blast director with the
round and film cassette located near the focus. Two X-ray pulsers,

Field Emission Model 233, were located behind protective aluminum

plates outside the vertex of the parabolic wall. The X-ray pulsers

were mounted in a support stand so that one pulser was located

directly above the other pulser. The gun stood vertically on a

piece of thin cardboard that was secured to a wooden stand. A

blast-proof film cassette was positioned approximately 6-inches

from the gun central axis.

A twisted pair of wires was placed in direct contact with the

explosive filler and shorted when the gun was detonated. These

wires were attached to two delay amplifiers, Field Emission Cor-

poration, Model I_4, by means of a trigger circuit. When the wires
shorted, the delay amplifiers were started. These delay amplifiers

triggered the discharge of the X-ray pulsers, at predetermined

times, through pulser triggering step-up transformers.

A single trace oscilloscope, Tektronix Model _4_, with a
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Polaroid camera attached was attached to the triggering transformers
so that the oscilloscope displayed the discharge of the X-ray pulsers.
The oscilloscope sweep was started by the shorting of the twisted
pair of wires at the gun.

Eastman Kodak "Royal Blue Medical Film" was used with DuPont
Industrial Intensifying Screens in the blast-proof cassette. The
upper window of the cassette was positioned so that the liner end
of the gun would be radiographed with the pellet a few inches from
the base of the liner. The second window of the cassette was lo-
cated so that the pellet could be radiographed at a distance of
about 10 inches from the base of the liner.

Measurement procedure. - Since this facility did not afford

two simultaneous views of the pellet, but instead, two independent

views_ the pellet could not be analyzed three-dimensionally. The

pellet flight path was assumed to be down the center of the X-ray
system. Measurements of locations of fiducial marks were made with

reference to the underside of the 6-inch thick steel platform stand-

ing above the gun and cassette. Information required for the align-

ment of the systems included: pulser to film relationship_ pulser

to round central axis relationship_ pulser to platform distance_

film to platform distance_ and the distance from the X-ray source

to the film. Additonal information needed for computing the pel-

let velocity included: the vertical distance between X-ray pulsers_

the time interval between X-ray pulser discharges_ and the vertical

distance from the pellet image to the fiducial mark on the film.

System alignment measurements were made using a tape measure

and plumb line. Time intervals between X-ray pulser discharges

were measured with oscilloscope and counters as at the NASA Test

Site. The film measuring procedures used for this facility were
identical to those used for the NASA Test Site. The mass and velo-

city data obtained from the Open Test Site testing did not include

the three-dimensional corrections used for the NASA Test Site_

therefore, the mass and velocity values obtained for Open Test Site

tests should be considered as approximate values.
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SPATIAL DATA REDUCTION

The purpose of this ction is to define a method of data re-

duction by which the spat. I properties of a shaped charge pellet

can be easily determined. These properties are length, orientation_

and linear and angular velocity• It is also desirable to know the

ratio of pellet size to image size for each of the X-ray shadow-

graphs.

Figure F-lis a simple sketch of the NASA Test Site at the

Ravenna Army Ammunition Plant_ Ravenna, Ohio. The sketch suggests
a natural coordinate system. The Z axis is the line formed by the

intersection of the planes of the films. The X axis is a line

perpendicular to the Z axis in the plane of films 2 and 4 through

the point P. The Y axis is the line_ in the plane of films i and

3, perpendicular to the X and Z sxes at point P. Fiducial lines

are located on each film along *he X (or Y) axis and at a given

distance from the Z axis as shows in Fig. F-2.

In the ideal case the coordinates of the pellet tip can be

found by locating the intersection of lines P_ P^ and P_ P_ as

shown in Fig. F-3. Likewise the pellet tail is±at_the in_er_ection

of lineSan_P P__and P, P_. However due to errors in measurement_• . [9

timing, pOsltlonlng, these lines do not intersect but come

very close. Thus a method must be found to determine a "best" fit.

If QI' (Xl' YI' _) and Q2 (X2' Y2' Z2) are points in Euclidean

three space_ then the line passing through these two points is

given by the parametric equation;

X-XI = Y-YI Z -Z ILI : = = t (i)

X2 -XI Y2 -YI Z2 -ZI

!

Let Q
i

! ! ! ! 2 ! !(XI' YI' ZI) and Q2 (X , Y2' Z2) be two other points

in three space. Then a line between these two points is given by

X' ' Y' ' ' '
L2 . -XI -YI Z -Z I• S_ -- -- (2)

X' -X' Y' -Y' Z' -Z'
2 1 2 i 2 i
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If Q is a point on LI and Q'is a point on L2, then the dis-

tance between Q and Q' is given by

d = ((X-X')2 + (y_y')2 + (Z-Z')2)I/2 (3)

and

d2 =
I

(t (X2-X I) -s (X'2-X'I) - (XI-X I))2

(t (Y2-YI) -s (Y2-Y'I) -(YI-Y'I ))2 +

+

' ' ' )2
(t (Z2-Z I) -s (Z2-Z I) - (ZI-Z I)

The shortest distance between point Q and line L2 can be

found by solving the equation,

ad
-- = 0

as

for s and substituting into equation (4).

In a similar manner the shortest distance, between Q and L1

can be found by solving,

- o (6)

If (_) and (6) are solved simultaneously we can determine the

shortest distance between lines LI and L2. Thus,

I I I I !

-2clOd = 2 (t (X2-X I) -s (X2-X I) - (XI-X I))(X2-X I)
Os

! t t

+ 2 (t (Y2-_) -s (Y2-Y'I) - (Yz-YI)) (Y2-YI) (_a)
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! ! 1 !

+ 2 (t (Z2_Z I) -s (Z2-Z I) - (ZI-ZI))(Z2-Z I) =
0

and

_d X' X' (X'l-XI))(X2-XI)2d_ = 2(t (X2-X I) -s ( 2- i ) -
+

! !

2(t (Y2-YI) -s (Y2-Y'I) - (YI-YI))(Y2-YI)
+ (6a)

! ! !

2(t (Z2-Z I) -s (Z2-Z I) - (ZI-ZI))(Z2-ZI) =
0

By use of the vectors_

= (x2-XI, Y2-YI _ Z2-Z I)
(7)

1 ! 1 !

: (x;-x'l,Y2-Yl,Zl-Zl) (8)

I ! !

= (Xl-Xl, YI-YI, Zl-Z I)

We can change (Sa) and (6a) into the equivalent vector forms

(9)

o : t (_ _) -s (_ _') -_. (i0)

0 = t (_ • [') -s (_ - [') -X - a' (ii)

Solving for s, we get,

(_ a)(_- _') + (_. _')G- _)
S -

(_ . _,)2 _ (_ . _)(_, _.,)

and t can be found by substituting s into (i0) or (ii).
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Since the shortest distance between two points in Euclidean

three space is a straight llne, then the line given by Pa(Xa, Ya, Z_

P_(X_, Y_, Zig)where

Xa = t (X2-X l) + X 1 (12)

I ! l

x_ = s (x2-xI) + xI (13)

Y = t (X2-Xl) + Y1 (14)

y = s (y2-Yl) + Y1 (15)

Za = t (Z2-Z I) + Z 1 (16)

!

:, +

If we let

Q1 = P1 (18)

Q2 = P3 (19)

Q1 = P4 (20)

Q2 = P6 (21)

in Fig.F-3_then the midpoint of the line segment represents the

"best" fit for the pellet tip P7 by the least squares method. The
length of Q Q' is then a measurement of the error in our determi-

nation of point P7"

Likewise if we let

Q = P (22)
1 1
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q2 = P2 (23)

!

ql = Ph- (2_i

!

q2 = P_ (2_)

then the midpoint of the line segment represents the "best" fit for

the pellet tail P8 and the length q q' is then a measurement of the

error in our determination of point P8"

If the coordinates of P
7

length can be computed by

and P8 are knc,,cn, then the pellet

L = ((x7_X8 )2

Since

+ (xy-Y8)2 + (z7-z8)2)l/2
(26)

(tan2a) +i - cosl2_
(27)

then

a = tan-i/Icos- 2c°s2_a
(28)

The angle Y in Fig. F-bcan then be computed from the relation

COS )/ -

z 7 -z 8
(29)

L

and the angle 8 can be computed by

8
Y -Y

= tan-i 7 8 (30)

x -x87
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The coordinates of the pellet midpoint are calculated from

X
x7+x8 (31)

2.0

Y
Y7 +Y8 (32)

m

2.0

E

Z
_ z7+z8 (33)

2.0

The reduction factors are defined to be the ratio of the ob-

ject size to the image size. We can see from Fig.F-5 that

X X
P

i o

(34)

or

o
Rf - i- X

P

(35)

For films 2 and 4 the reduction factors are given by

X 4-Y

Rf -
Y#

and for films i and 3 the reduction factors are

X I -X

Rf -

X I

(37)

(38)
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Now assume that we have a second view of the pellet at a time

t later. Assume also that the pellet position is recorded in a

second coordinate frame which has been displaced from the first by

a distance F along the Z axis. Then the velocity is given by

= ((_2-x±)2 + (_2-_1)2 + (F+_2-Zl)2)l/2/at (39)

We know that for any two vectors, _ and

a • b = lallbl cosa
(_-o)

cos _ : a b
_ (_I)

laf Ibl

a - b

(y(7,po-y_B,_))+ (z_,D-z_B,l))(z_,2)-z_B,2))

(h-P_)

lal = L
1

(length at position i) (43)

lbl : L
2

(length at position 2) (I+_)

then

COS

P

L L
12

(_-5")

l+l+
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or from equation (29)

n4__ _ 2 _ p2
ta i L2

p2

(46)

and the angular velocity can be calculated from

YPulser 2

0

(%7)

Y

o Pulser 4

Pulser f
0

X

Z o Pulser 3

X

Fig. F-I. Sketch of NASA Test Site Vacuum

Tube and Film Geometry.
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C PELLET SIZE AND VELOCITY

C DRD-31, AUGUST 22t 1966

DIMENSION X?(2), Y7(2), Z?(2), X8(2), Y8(2), Z8(2)

DIMENSION PLEN(2), RF{4), XB(2}, YB{2), ZB(2), ERROR(4)

COMMON Xl, Y1, Zlt X4, Y4, Z4, I, ERR, PLEN
COMMON X7, Y7, Z7, XGt Y8, ZG, GAMMA, THETA

X2 = 0.0

X3 = 0.0

Zl = 0.0

Y5 = O.O

Y6 = 0.0

Z4 = 0.0

READ i000, FX, FY, FDIS, PROG

PRINT I010, PRDG
5 I =0

IO I = I + I

READ i020, Y2, Z2, Y3, Z3, Xl, YI, SER

READ 1030, X5, Z5, X6, Z6t X4, Y4_ T

IF (I -2) 20, 30, 30
20 PRINT 1040

30 Y2 = FY - Y2

Y3 = FY - Y3

X5 = FX - X5
X6 = FX - X6
CALL POINT(X3, Y3, Z3, X6, Y6, Z6, X7, Y7, Z7)
ERROR(2*I } = ERR
CALL POINT(X2, Y2, Z2, X5, Y5, Z5, X8, Y8, Z8)
ERROR(2*I-1) = ERR

50 XL : X7(I) - X8(I)

YL = YT(I) - YG(1)

ZL = ZT(1) - Z8(1)

PLEN(I) = SQRTFIXL*XL + YL*YL + ZL*ZL)
CALL ANGLE

59 XB(1) = {X7(I} + X8(1))/2.0

YB(I) = (YT(1) + YG(1))/2.0

ZB(1) = (Z7(I) + ZG(I))/2°O

RF(2*I-I) = 1.0- XB(I)/Xl

RF(2*I) = 1.0- YB(1)/Y4

GAMMA = GAMMA*57.295

THETA = THETA*57.295

PRINT 1050, SER, PLEN[I), GAMMA, THETA

PUNCH 1090, PLEN{I), RF{2*I-1), SER

PUNCH 1090, PLEt_(1), RF(2*I), SER

IF (I-2) I0, 60, 60
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60 XL = XB(2) - XB(1)
YL = YB(2) - YB(1)
ZL = ZB(2) - ZB(1) + FDIS
VEL = SQRTF(XL*XL + YL*YL + ZL*ZL):_25°4/T
XL = (X7(1) - X8(1))*(X7(2) - X8(2))
YL = (Y7(1) - Y8(1)):¢=(YT(2) - Y8(2))
ZL = (Z?(1) - Z8(1))_(ZT(2) - Z8(2))
XL = XL + YL + ZL
COSG= XL/(PLEN(1)_PLEN(2)}
SING = SQRTF(I.0 - COSG*COSG)
OMEGA= ATANF(SING/COSG)
IF (COSG) 70, 80, 80

70 OMEGA= OMEGA+ 3.1415927
80 OMEGA= OMEGA*I59154.94/T

PRINT I060, VEL, OMEGA
PRINT I070, RF(1), RF(2), RF(3), RF(4)
PRINT 1080, ERROR(I), ERROR(2), ERROR(3), ERROR(4)
GO TO .5

1000 FORMAT(3FIO,4t A4)
1010 FORMAT(1HI, IOX, 7HPROGRAM_ 2X, A4)
1020 FORMAT (6FI0.4, A4)

1030 FORMAT (6FIO.4,F5. I)

1040 FORMAT(IHO, IOX, 5HROUND, 7X, 13HPELLET LENGTH, 8X,

C 5HGAMMA, 7X, 5HTHETA)

I050 FORMAT(IHO, IOX, A4, F17.3, F17.2, F12.2)

1060 FORMAT(IHO, IOX, IOHVELOCITY =_ F6.2, 2X, 6HKM/SEC, 7X,

C 18HANGULAR VELOCITY =, F8.1, iX, 7HREV/SEC)

1070 FORMAT(1HO, IOX_ 17HREDUCTION FACTORS, F7.3, 2X, 3H(1), F7.3,

C lX_ 3H(2)_ F7.3_ lX, 3H(3), F7.3_ IX_ 3H(4))
1080 FORMAT(1HO, IOX, 13HERROR FACTORS_ F7.3, 2X, 6HTAIL 1, F7.3,

C 2X, 5HTIP I, F7.3, 2X, 6HTAIL 2, F7.3, 2X, 5HTIP 2, //)

1090 FORMAT(IOX, 2F9.3, IX_ A4)
END
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SUBROUTINEANGLE
DIMENSION X7(2), Y7(2), Z7(2), X8(2), YB(2), ZB(2), PLEN(2}
COMMONXl, YI, ZI, X4, Y4, Z4, I, ERR, PLEN
COMMONXT, YT, Z7, X8, Y8, Z8, GAMMA, THETA
COSG= (Z7(I) - Z8(I))/PLEN(I)
SING = SQRTF(1.0 - COSG*COSG)
GAMMA= ATANF(SING/COSG)
IF (COSG) 52, 54, 54

52 GAMMA : GAMMA + 3.1415927

54 THETA = ATANF((YT(I) - YB(I))/(XT(1) - X8(I)))

IF (XT(1) - X8(I)) 55, 59, 59

55 IF (YT(1) - YB(I}) 57, 56, 56

56 THETA = THETA + 3°1415927

GO TO 59
57 THETA = THETA - 3.1415927

59 RETURN

END

SUBROUTINE POINT(XR, YR, ZR, XS, YS, ZS, XA, YA, ZA)

DIMENSION XA(2), YA(2), ZA(2)
DIMENSION X7(2), Y7(2), Z7(2), X8(2), Y8(2), Z8{2), PLEN(2)

COMMON XI, Y1, Z1, X4, Y4, Z4, I, ERR, PLEN

COMMON XT, Y7, Z7, X8, Y8, ZS, GAMMA, THETA

CR = -Xl

DR = YR - Y1

CS = XS - X4

DS = -Y4

CC = X4 - Xl

DC = Y4 - Y I
RI = CR*CR + DR*DR + ZR*ZR

R2 = CS*CS + DS*DS + ZS*ZS

R3 = CR*CS + DR*DS + ZR*ZS
R4 = CC*CR + DC*DR

R5 = CC*CS + DC*DS

S = (RI*R5 - R3*R4)/(R3*R3 - RI*R2)

T = (S.R3 + R4)/R1

R1 = T*CR + Xl

R2 = T.DR + Y1

R3 = T*ZR

R4 = S*CS + X4

R5 = S*DS + Y4

R6 = S*ZS

XA(1) = (RI + R4)/2.0

YA(I) = (R2 + R5)/2.0

ZA(1) = {R3 + R6)/2.0

RI : RI - R4

R2 = R2 - R5
R3 = R3 - R&

ERR = SQRTF(RI*RI + R2*R2 + R3*R3)
RETURN
END
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PROGRAM 839

ROUND PELLET LENGTH

I.I .486

1.2 .488

VELOCITY = 9,46 KM/SEC

REDUCTION FACTORS .844 (1)

ERROR FACTORS .029 TAIL I

GAMMA THETA

27.21 -IOI.70

53.20 -ii5.i7

ANGULAR VELOCITY =

.822 (2) .816 (3)

.030 TIP I .036

448.0 REV/SEC

.764 (4)

TAIL 2 .079 TIP 2

ROUND PELLET LENGTH

2.1 .396

2.2 .349

VELOCITY = 9.34 KM/SEC

REDUCTION FACTORS .867 (1)

ERROR FACTORS .040 TAIL I

GAMMA THETA

43.61 -41.6I

84.64 25.99

ANGULAR VELOCITY =

.825 (2) .881 (3)

.039 TIP i .035

I162.0 REV/SEC

.77O (4)

TAIL 2 .O39 TIP 2

ROUND PELLET LENGTH

4.1 .352

4.2 .326

VELOCITY = 9.47 KM/SEC

REDUCTION FACTORS .864 (i)

ERROR FACTORS .005 TAIL 1

GAMMA THETA

26.25 86.48

14.33 -70.08

ANGULAR VELOCITY = 644.8 REV/SEC

.878 (2) .861 (3) .916 (4)

.006 TIP I .048 TAIL 2 .029 TIP 2

ROUND PELLET LENGTH

7.i .370

7.2 .369

VELOCITY = 9.53 KM/SEC

REDUCTION FACTORS .834 (I)

ERROR FACTORS .Oi? TAIL i

GAMMA THETA

39.64 -I59.22

I26.36 -i47.03

ANGULAR VELOCITY =

.828 (2) .780 (3)

.021 TIP I .055

1445.7 REV/SEC

.781 (4}

TAIL 2 .046 TIP 2
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MASS DATA REDUCTION

The purpose of this section is to describe a method of data

reduction by which the mass of a shaped charge pellet can be deter-

mined. Figure _lbelow, presents a sketch of a typical pellet, X-ray

pulser source, and film situation in the NASA Test Site orthogonal

X-ray system.

Z

FILM f

d

Fig. G-I.

Geometry.

_2

Sketch of NASA Test Site Pellet, X-ray Source, and Rim
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In Fig.G-ithe projected pellet shadow is shown in the Y-Z

plane_ representing film 11 and in the X-Z plane_ representing film

2. Each shadow was divided into a number of increments of equal
length. Each increment was assumed to have a circular cross-sec-

tion and possibly with a tapered lateral surface. Therefore_ the
increments were assumed to be of the form of a circular conic frus-

tum. When the diameters at both ends of an increment were equal,
the form reduced to a right circular cylinder.

A sketch of a typical film image of a pellet in the orthogonal
system is shown below_ Fig. G-2

1 2 3 4 _ 6 7 8 9

.i .3 .5 .7

Figure G-2.Sketch of Typical Film Image of Pellet.

The pellet image above has been divided into seven uniform incre-

ments of 0.i inch and one increment of length .07 inch. The ex-

pression for the volume of one circular conic frustum increment
can be written as:

I--2--_hLFD21 2 D22]j where, h is the length of the (48)V = + DID2 + increment and D I and D2 repre-
sent the diameter of the frus-

tum ends.
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The total volume of the pellet can be computed by using the

following equation:

V = 7Th

12
(d12 t dld 2 + d22) + (d22 + d2d 3 + d32) t (49)

(d32 + d2d3 + d32 ) + (d32 + d3d4 t d%2) + ....]

.,_ W" (Ah)

12 d82 + dsd 9 + d92_

where h = height of increment = 0.1 inch

( _ h) = height of partial increment = .07 inch

dj = diameter measurement

By changing the mode of expression to that of a summation and using
the notation used in the computer program at the end of this section:

V ___

t

where

IAM.2(J) + DIAM.(J) x DIAM•(J+I DIAM.2(jtlTF h

2 J:1

7f(_h) EDIAM.2(K+I)+ DIAM.(K+I) X DIAM.(K+2) + DIAM.2(K+2)_
12

K = number of complete increments

DIAM.(J) = dj = diameter measurement

and other notation is defined in the same way.

In computing the pellet volume in the above manner, each of
the three dimensions of measurement were increased by a magnifica-

tion factor, M, from the pellet to the film image. Therefore_ the

dimensions of the pellet measured on the film must be decreased by

a factor of I/M Applying (I/M)3 or the volume reduction factor,

(REFAC)3, through the pellet's midpoint for the appropriate film,
the corrected volume was found to be:
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V = (REFAC)3V (51)
C

But_ most pellets were found to be oriented such that the film

image was foreshortened_ with respect to the full profile pellet

image_ and therefore the pellet length was greater than it appeared

to be. Figure _3presents a sketch of a case of pellet image fore-
shortening.

I Z

I FILM 1

I

/
/

"'_ I/I/x
- I_ Y

7 4. X 8

2

X/ RAY SOURCEPULSER I
4w

FigureG-3 Sketch of Pellet Image Foreshortening Situation.

Assume that an image of the pellet exists in the plane paral-

lel to the Y-Z plane at the distance of [(X7+X8)/2] from the Y-Z

plane. The reduced length of the image in the new plane would be:

(RLEN) = (REFAC) ( FLEN ) ( 52 )

where, REFAC = Reduction factor
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FLEN = Length of pellet image on film

RLEN = Reduced length in the new plane

Since the new plane was made parallel to the Y-Z plane and

intersected the pellet's center, the ratio of the true pellet lengt_ 4

as determined by the distance equation (53) shown below, to the re-

duced pellet length, as determined in equation (52) yielded the cor-

rection factor for the pellet's actual volume.

d = = ((X7-Xs# + (Y7-YS)2 + (ZT-Zs)2)l/2 (53)

Where, d : PLEN : pellet length

(X7' Y7' Z7) : pellet tip coordinate

(X8' Y8' Z8) = pellet tail coordinate

Therefore :

PLEN

(RATIO) - where, RATIO >- i. (54)
RLEN

By multiplying the pellet volume, as computed from film meas-

urements with magnification correction applied, by the pellet

material density, the uncorrected value for the mass was written:

PMASS : V p. (55)
C

Multiplying by the foreshortening correction ratio_ the corrected
mass was :

CMASS = (PMASS) (RATIO). (56)

This computation procedure was used for each of the films at

station i and station 2, i.e., films I and 2, and films 3 and 4

respectively. Then the two mass values obtained at each station

were averaged and the resulting mass was taken to be the measured

mass of that station. Program DRD-19, written in Fortran II-D
language, was used to compute pellet masses in the manner just

outlined. The calculations were performed on an IBM 1620 computer.
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DRD-19, PELLET MASS

K S HOVAN MAY 27, 1966
DIMENSION DIAM(14),SER(4)

DIMENSION PMASS(4),CMASS(4)

CON=12.0

PI=3.14159265

READ IO00,DEN,STEP,NUM

PRINT 2OO0,NUM
6 M=O

7 DO 22 L=1,4

SlGMA:O.O

READ IO01,FLEN,PLEN,REFAC,SER(L)

READ IO02_(DIAM(J),J=I,14)

K=FLEN/STEP

DO 14 J:I,K

VIN=STEP*(DIAM(J)*DIAM(J)+DIAN(J)*DIAM(J+I)+DIAM(J+I)*DIAM(J+I))
14 SIGMA=SIGMA+VIN

AK=K

DELTA=FLEN-(O.I*AK)

DEVOL=DELTA*(DIAM(J+I)*DIAM(J+I)+DIAM(J+I)*DIAM(J+2)+DIAM(J+2)*DIA
1M(J+2))

TOVOL=SIGMA+DEVOL

PROD=((((PI*DEN)*REFAC)*REFAC)*REFAC)/CON

PMASS(L}=TOVOL*PROD

22 CMASS(L)=PMASS(L)*(PLEN/(REFAC*FLEN)}

AMASI=(PMASS(1)+PMASS(2))/2.0

AMAS2=(PMASS(3)+PMASS(4)}/2.0

CMASI=(CMASS(1)+CMASS(2))/2.0

CMAS2=(CMASS(3)+CMASS(4))/2.0

PRINT 2001

PRINT 2002

PRINT 2003,SER(I},PMASS(1),PMASS(2},AMAS1

PRINT 2006,CMASS(1),CMASS(2),CMAS1

PRINT 2004,SER(3),PMASS(3),PMASS(4),AMAS2

PRINT 2007,CMASS(3)tCMASS(4),CMAS2

M=M+I

IF (M-4) 7,26,26
26 PRINT 2OO5

GO TO 6

1000 FORMAT (2F10.4, I4)

!00! FORMAT (3F10.4,A4)
1002 FORMAT (

2000 FORMAT (

2001 FORMAT (

2002 FORMAT (

2003 FORMAT (

2004 FORMAT (

2005 FORMAT {

IING/IH1)

2006 FORMAT (

2007 FORMAT (

END

14F5.3}

IHI,IOXTHPROGRAM,2XI4)

IHO,IOXSHROUND, IOX4HMASS,IIX4HMASS,IIXI2HAVERAGE

IH ,25X4H(GM),IIX4H(GM),I5X4H(GM))

IHO,IOXA4,FI5.2,IX3H(1),FII.2,1X3H(2),FI5.2)

IHO,IOXA4,FI5.2,1X3H(3),FII.2,1X3H(4),FI5.2)

IHO,IOXIH*,2X45HMASS VALUES ADJUSTED FOR IMAGE

IHO,12XIH*,FI6.2,1X3H(1),FII.2,1X3H(2),FI5.2)

IHO,12XIH*,FI6.2,1X3H(3),FII.2,1X3H(4),FIS.2,/}

MASS)

FORESHORTEN
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PROGRAM 8390

ROUNO MASS MASS AVERAGE MASS

(GM) (GM) (GM)

I.I

x_

1.2

x(

.87 (I)

.86 (I)

.89 (3)

.98 (3)

.97 (2)

1.14 (2)

.79 (4)

1.23 (4)

.92

1.00

.84

I.I0

ROUND

2.1

2.2

X(

ROUND

4.1

x=

4,,2

_x

ROUND

7.1

7.2

MASS

(GM)

.62 (I}

.74 (I)

.61 (3)

.78 (3)

MASS

(GM}

.77 (i)

•77 (i)

.61 (3)

.60 (3)

MASS

(GM)

.75 (i)

.84 (i}

.74 (3)

.90 (3)

MASS

(GM)

.86 (2)

.98 (2)

.71 (4}

.77 (4)

MASS

(GM)

.62 (2)

.69 {2)

.73 (4)

.75 (4)

MASS

(GM)

.80 (2)

.82 (2}

.73 (4)

•73 (4)

AVERAGE MASS

(GM)

.74

.86

.66

.78

AVERAGE MASS

(GM)

.69

.73

.67

.67

AVERAGE MASS

(GM)

.78

.83

.74

.82

MASS VALUES ADJUSTED FOR IMAGE FORESHORTENING
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A}_ALYSIS OF FILM MEASUREMENT ERROR

Introduction

The purpose of this experiment was to experimentally determine

the accuracy to which the properties of length, diameter_ and mass
could be determined for a shaped charge pellet by the methods de-

scribed in Appendixes F and G.

A three inch rod of nickel 200 was cut into four lengths.
Three of the units were flattened at one end and notched at the

other end so that they roughly resembled a two gram nickel pellet.

Using a micrometer the lengths and diameters were measured and re-

corded• The "pellets" were weighed on a balance calibrated to

0.01 gram and the masses were also recorded. They were then

placed in blocks of Styrofoam which measured l.O-inch by 5.75-

inches by 12.0-inches. Each block was placed in the aluminum tube

of the NASA Test Facility, shown in Fig. 14A_ so that the pellet

was nearly centered at station two. Then X-ray radiographs were

taken. The positions_ lengths_ and diameters of the pellet film

image were independently measured by two observers• A 6 power
reticle was used to measure the film pellet images.

Table H-I. Comparison of Lengths

Data and Results

Actual Observer Error Percent Observer Error Percent

Length i Error 2 Error
•493 .499 +.006 1.22 .487 -.006 1.22

•672 .621 -.0_i 7.59 .627 -.045 6.70

._67 .560 -.00_ 1.23 •570 +.003 O. _3
776 682 -.09_ 12 ii _o_ _.... Uuf -._9 11 kq

Avg.

The pellet lengths measured by the two observers are presented

and compared in Table H-I. The data indicate a strong tendency

to underestimate the pellet length. Of eight readings_ only two

were overestimates of pellet length, each by a small percentage.

0nly two of the eight calculated lengths were in error by more than
i0_ and four were in error by less than 2%.
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Table H-2. Comparison of diameters.

Actual Observer Error Percent Observer Error Percent

1 Error 2 Error

.169 .167 -.022 1.18 .163 -.006 3.59

.167 .172 +.005 2.99 .163 -.004 2.45

.156 .156 -.000 0.00 .152 -.004 2.63

.186 .174 -.012 6.90 .170 -.016 8.60

Avg. 2.77 -t_

The measured diameters are presented and compared above.

The tendency to underestimate the diameter appears to be even

stronger than the tendency to underestimate the length. Seven of

the eight readings were underestimates. The discrepency averages
about 3% which is an error of one division on the reticle used for
these measurements.

Table H-3. Comparison of masses.

Actual Observer Error Percent Observer Error Percent
1 Error 2 Error

1.45 1.70 +0.25 17.24 1.54 +0.09 5.84

2.20 2.05 -0.15 6.82 1.88 -0.32 17.02

1.52 1.45 -0.07 4.61 1.38 -0.1% 10.1%

2.71 2.50 -0.21 7.75 2.49 -0.22 8.84
Avg. 9.11 i_

The masses, as shown in Table H-3 , also tend to be under-
estimates of their true value. Of the eight calculated masses

only two exceeded the true value. Both overestimates were made on

the same pellet. The other six calculated masses averaged 0.2

gram less than the true mass.

Conclusions

Though the amount of data is insufficient to state a definite

conclusion, it does indicate that there might have been a tendency
to underestimate the pellet mass by about 6%. It should be noted

also that the data readings in this experiment were taken only

once by each observer, and no attempt was made to refine the data
as was done with the actual pellets of the Calibration Study.
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APPENDIX I

PELLET DEBRIS ANALYSIS

Introduction

The purpose of this analysis was to study several character-
istics of the debris surrounding the 40 degree Hyperbolic nickel

pellets in this calibration study. The debris characteristics

studied were: numbers of particles, velocity, effective center

of mass, and total mass. All radiographs discussed in this appen-
dix were taken at the NASA Test Site.

Analysis Methods

The particles are generally quite small and numerous. Many

of the particle images have no definite areas which can be labeled

particle or boundary. For large, solid particles, the boundary,

or penumbra, is a semi-gray area about O.OOg inch wide surrounding
the particle image. It is darker than the image but lighter than

the background. For small particles, the penumbra may appear to

constitute the entire image. Since the penumbra constitutes a

significant portion of the image, any information taken from the

films must be considered in the light of penumbra effects to be

meaningful.

To better understand the penumbra, two sizes of steel ball-
bearings were mounted on a sheet of cardboard. The cardboard was

placed at station 2 in the tube of the NASA Test Site test facility

at the Ravenna Army Ammunition Plant, Ravenna, Ohio, and radio-

graphed. The image size was calculated for small bearings assuming

a point X-ray source. The diameters for the small and large bear-
ing images were measured to the discernible outer edges of the

penumbra. For each bearing size, the penumbra was consistently

measured to be 0.007 inch greater than the calculated image diame-

ter. This result indicated that the penumbra diameter and the

point source image diameter differed by a constant which was iden-
4-- _^1 +"_ ^11 • A_ _-_ _ _-l_ _ _- 4-]Q_ _T_ _T_ _ I'll _:_ f.A lll(_ _A

film intensity with good consistency. This judgement was later

found to vary over a period of several days. Since about one day
is required to measure all the debris recorded on a radiograph, the

measurements should be calibrated daily by measuring known images

before and after viewing the debris. In this way the appropriate

penumbra effect correction factor could be determined.

The debris particles appearing on the radiograph are evenly

distributed if one only considers a small area. If the particle

placement is random or nearly random with respect to mass also,

as appears to be the case, then the total mass of the particles

may be treated as though it were at the centroid of the area.
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Thus, if the radiograph is divided into coordinate squares one
inch on each side, only a small amount of error will be introduced
by treating the particles as though they were at the squares'
centers, greatly simplifying measurements and calculations.

Most of the particles generally appeared to be prolate sphe-
roids as shown in Fig. I-i. Therefore, the assumption was made
that all of the particle volume could be calculated from a volume
formula for a prolate spherical. This relation is:

V

where "a" is the long axis of the configuration. For any orien-

tation of a given particle the dimension b is always measurable
because of symmetry. However, the dimension "a" which is measured

from the film depends on an angle a which it makes with the plane

of the film. Since there is no practical way of determining this
angle for each particle it was assumed that all values of a be-

tween 0 and _/2 are equally probable. An average value for cos

a was then used to correct the measured lengths of "a" which
were obtained from these radiographs.

The center of mass of the particles were estimated for each

radiograph, then, when two sequential radiographs of the same

debris pattern were analysed, it was possible to determine the
debris velocity.

If the _center of mass of the debris which is seen on the film,

has a value X relative to some reference line on the film,one can

calculate a value. _ mi I(2 - x i)l

Xr = i=l
n

m i
i=l

where mi is the mass of the individual particle and x i is its

distance from X. The quantity Xr might be termed a polar center
of mass. This value was determined for each film in order to ob-

tain an idea of how rapidly the debris was spreading radially_ A

radial velocity was calculated when two successive values of X r
were determined. This radial velocity is reported in Table

however, it should be noted that the _r value is strongly affected by

a few large particles which tend to stay near the jet pellet.

Consequently the radial velocities determined from a value of _r
are low. Actually there are a large number of small particles
which are traveling much faster than the values listed in Table
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Discussion of Data and Results

The debris seen on 9 radiographs of pellets were measured.
These radiographs represented _ pellets of the calibration study.
The following program round numbers and corresponding film numbers
were measured: 839-1, films 2 and 4; 847-4, films I, 2, and 4;
847-6, film 3_ 847-12, film 4; 8_i-2, films 2 and 4. A tenth
radiograph was measured, 866-_, film 3. The tenth radiograph was
used for calibration of the measuring technique used. Stationary
artificial debris was used to simulate the debris observed in the
actual test shots. The total mass of this test debris was 1.33
grams.

During the debris measurement, several characteristics were
noted which could not be included in the data reduction. For
many of the particle images, an extremely wide penumbra was ob-
served. Since a similar effect was observed with the artificial
debris when smaller particles adhered to the surface of a larger
one, it was concluded that the extra width was due to diffusion
of the X-rays through fine particles. In such a case, an attempt
was made to determine where the edge of the penumbra would have
normally been and measurements were made to that point. Some of
the debris images appeared to be much fainter than others of simi-
lar size. It was assumed that these particles were farther from
the film.

Table I-I presents the results of the debris analysis. There
seemed to be some differences between the Modified Flight Test and
Full Flight Test debris. There appeared to be less debris accom-
panying the Full Flight Test pellet than the Modified Flight Test
pellets. The average mass of the Modified Flight Test debris ob-
served at station I was 1.12 gram while the mass of the one Full
Flight Test debris observed was 0.33 gram. Therefore, the mass of
the Full Flight Test debris observed was about _8_ less than the
mass of the Modified Flight Test debris observed at both station i
and station 2. Examination of the radiographs of other calibration
rounds, that were not included in this analysis, tended to confirm
the difference between the Full Flight Test pellet debris and the
Modified Flight Test pellet debris.

Since much of the large debris was probably generated by
pellet fragmentation, the difference in debris mass of the Full
Flight Test pellets and the Modified Flight Test pellets would
imply a pellet mass difference of about 0._ gram. The mass of the
Full Flight Test pellet observed was 0.41 gram larger than the
Modified Flight Test pellets observed average mass at station I
and 0.27 gram larger at station 2. Although the differences in
pellet mass do not exactly account for the computed debris mass
differences, they do confirm the trend. Therefore, the debris
data tends to confirm the hypothesis that the difference between
the Full Flight pellet mass and the Modified Flight Test pellet
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Appendix I

mass was caused by a difference in extent of pellet fragementation_
i.e._ the Full Flight Test pellet did not fragment as much as the

Modified Flight Test pellet.

In the determination of the mass of the artificial debris of

866-_, the calculated mass was found to be 0.28 gram too low.

About O.i0 gram was probably caused by the fact that the very
small debris could not be seen on the film and therefore was

immeasureable. A small portion of the error could have been

caused by the fact that the artificial debris were small pieces

of wire and therefore cylindrical instead of spherical in form.

The main error was probably caused by measurement and judgement
error.

Conclusions

The debris analysis indicated that the bulk of the debris

that was found to surround the 40 Degree Hyperbolic nickel pellets

was probably caused by the breaking up or fragmenting of the rear

of the pellets. The computed mass of the debris_ combined with

the correction for errors in measurement and observation_ confirms

that the difference in pellet mass of the Full Flight Test pellets

and the Modified Flight Test pellets was due to the extent of
fragmentation of the pellet.
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Fig. I-i. Prolate Spheroid.
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TABLE IA

TEST PLAN

40 Degree Hyperbolic Nickel Liner

65/35 Octol Explosive Filler

Type of Test

i. Body Confinement

2. Modified Flight Test

3. Spin Test (25rps)

4. Full Flight Test

5. Initial Pellet Mass Test

6. Flight Test by NASA

Program No. of

Number Ambient Pressure firings

839 30-60 microns 5

847 30-60 microns 12

850 Atmospheric 5

851 30-60 microns 3

856 Atmospheric 2

...... _ 3

TABLE IB

TEST PLAN

30 Degree Conic Ingot Iron Liner

Composition B Explosive Filler

Type of Test

1. Modified Flight Test

2. Spin Test (25rps)

3. Full Flight Test

4. Flight Test by NASA

Program
Number

853

858

859

No. of

Ambient Pressure firings

30-60 microns 12

Atmospheric 5

30-60 microns 3
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TABLE II.

ITEMIZED WEIGHT OF THE FLIGHT ASSEMBLY

Assembly - 40 Degree Hyperbolic Nickel Liner

(ASSEMBLY DRAWING DRC-23-2062-2)

Description

Adapter-Base Plug

Tetryl Booster

16 Blind Rivets

Felt Pad

Body

Octol Charge

200 Nickel Liner

Retainer Ring

Adapter Plate

Drawing Number

DRB-23-2305-4

None

Huck CKL-P4E

1/16 x 2-1/8 Dia.

DRB-23-2306

From Loading Fixture
DRC-II-2040

DRB-23-2295

DRB-23-2299

DRB-23-2300

Total Assembly Weight

Wt. gms.

77.5

16.2

3.6

1.3

167.1

562.5

59.0

10.3

38.9

936.4

Wt. ibs.

.171

.036

.OO8

.OO3

.368

1.240

•130

.023

.086

2.065

Note: All weights shown were experimentally determined

by using average weights of several pieces•
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TABLE III.

ITEMIZED I_IGHT OF THE SHORT FLIGHT ASSEMBLY

Assembly - 30 Degree Conic Ingot Iron Liner

(ASSEMBLY DRAWING DRC-N-58)

Description

Adapter - Base Plug

Tetryl Booster

24 Blind Rivets

Felt Pad

Fiberglass Body

Composition B Charge

Ingot Iron Liner

Ingot Iron Liner Cap

Lucite Inhibitor

Retainer

Drawing Number Wt. gms. Wt. lbs.

DRB-N-62 88.5 .I_9_

None 16.2 .036

Huck CKL-P4E 5.4 .012

1/16 x 2-61/64 Dia. 2.5 .005

DRB-N-63 162.8 .359

From Loading Fixture 898.1 1.980

DRB-N-57

DRB-N-54 339.0 .747

.005 x .531 Dia. .2 .OO1

DRB-N-56 136.9 .302

DRB-N-55 23.3 .051

Total Assembly Weight
Less Adhesives

Note:

1672.9 3.688

All weights shown were experimentally determined by

using average weights of several pieces
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TABLE IV.

ITEMIZED WEIGHT OF THE LONG FLIGHT ASSEMBLY

Assembly - 30 ° Conic Ingot Iron Liner

(ASSEMBLY DRAWING DRC-N-57)

Description

Adapter-Base Plug

Tetryl Booster

24 Blind Rivets

Felt Pad

Fiberglass Body

Composition B Charge

Ingot Iron Liner

Ingot Iron Liner Cap

Lucite Inhibitor

Retainer

Drawing Number Wt._ms.

90.5

None 16.2

Huck CKL-P4E 5.4

1/16 x 2-61/64 Dia. 2.5

DRB-N-61 157.3

From Loading Fixture 898.1

DRB-N-57

DRB-N-54

.005 x .531 Dia.

DRB-N-56

DRB-N-55

Total Assembly Weight
Less Adhesives

Wt. lbs.

.200

.o36

.012

.005

.347

1.980

339.0 .747

.2 .001

136.9 .302

23.3 .051

1669.4 3.681

Note: All weights shown were experimentally determined by

using average weights of several pieces.
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Table Vl

PELLET VELOCITY AND ORIENTATION DATA

40 Degree Nickel Hyperbolic Liner

E Type of Test Program Ambient Station 1 Station 2 Tumbling VelocityRound Pressure Theta Gamma Thets Gamma Rate (Km/sec)

I :_umber (microns) (deg.) (deg.) (deg.) (deg.) (rps.)
N (Note i) (Note 3)
E

1 iBody Confinement rest 839-1 49 -101.70 27.21 -115.17 53.20 448.0 9.46

2 ,, 8%9-2 140 -41.61 4_.61 2_._ 84.64 1162.O 9.34

3 " 8_-4 _O 1 86.48 26.25 -70.08 14.33 644.8 9.47

4 " 8_9- 7 60 1 -159.22 39.64 -147.O3 126.36 1445.7 9.53

5 ,, 839-8 59 1 81.8o 50.59 74.72 lO8.14 958.3 9.52

Modified Fli_ht Test 847-1 55 1 -108.81 56.22 -125.46 141.24 1419.6 9.39

7 " 847-3 60 1 -85.95 46.72 -148.71 150.73 I 1864.3 9.43

,, 84?-4 _5 1 -141.08 30.18 -148.96 66.67 I 606.2 9.50

9 " 847- _ 4p I. 162.44 24._6 176.50 60.08 606.7 9.49

11 " 847-6 35 _ 0.05 9.29 0.51 33.34 396.2 9.50

12 " 847-7 30 2 -169.91 16.32 -164.65 53.48 623.3 9.55

l_ " 847-8 30 2 Ii.O1 39.77 13.91 115.73 1246.9 9.62

i_ " 847-9 31 2 -Iiq.27 7.83 -110.62 35.59 458.5 9.60

i_ " 847-IO 28 2 -17.83 34.4O -135.OO 126.10 2215.6 9.66

16 " 847-11 28 d 16h,lO 7_.86 -42.24 158.83 2074.7 9.60

17 " 847-12 24 2 -6_.OO 17._O -56.06 36.38 316.O 9.56

18 Full Fli6ht Test 851-2 27 2 -36.13 24.49 -50.82 61.68 617.9 9.63

19 " 851-_ 26 2 28.68 _.16 29.25 32.29 469.9 9.66

20 " 851-4 24 2 -127._7 41.40 -i_i.76 112.?? 1207.1 9.68

21 Spin Test (-2_ rps) 850-9 Atla. - ......... 9.39

22 " 8_0-i0 Atm. -......... 9"45

2_ " 850-11 Arm. -......... 9.38

124 " 850-13 Arm. -......... 9.62

2_ " 8_0-14 Atm. _ ......... 9.61

26 Initial Pellet Mass Test 856-i Atm. - ...........

27 ,, 8_6-2 Atm. - ...........
w

Notes: 1. All pressure readings with superscript 1 were measured at the pump gauge location.
All other pressure readings were measured at the tank gauge location. The pump gauge

typically indicated the pressure to be aboat 20 microns lower than the tank gauge.
All pressure readings with superscript 2 were corrected for ambient temperature ac-

cording to the gauge manufacturers instructions.
2. Spherical coordinates were used. Gamma here is the same as phi commonly used in

spherical coordinates. The pellet was traveling in the_Z direction.
3. The value shown was calculated by assuming that the pellet did not tumble more than

1/2 revolution from Station 1 to Station 2. Since only two radiographic stations

were available, the direction of tumble could not be determined. The pellet could
have tumbled several revolutions between radiographic stations and not have been

observed. Therefore, the 1/2 revolution restriction was necessary.
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Fig. 20. Initial Pellet Mass Test- Representative Radiographs. 
40" Hyperbolic nickel liner. (Fig. 4 assembly, Open 
Test Site, atmospheric ambient pressure.) 
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O overall average

(most probable
value )

1.30

[] Body Confinement

Test_ prog. 839 1.20

Modified Flight

Test, prog. 847

<> Full Flight Test_

prog. 851 i.i0

Note- The rectangle
incloses the 95_ con-

fidence interval on

the mean.

1.00

.9o

Pellet velocity, km/sec.

Fig. 24. Graphic presentation of pellet mass v.s.

pellet velocity for low ambient pressure, 40 o

Hyperbolic nickel liner test programs.
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program 8_3
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Fig. '2_. Graphic presentation of pellet mass v.s. pellet velocity

for low ambient pressure_ 30 ° Conic

Ingot Iron liner test programs.
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